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Potts Ferromagnet: Transformations and Critical 
Exponents in Planar Hierarchical Lattices 
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We prove that the duality transformation for a Potts ferromagnet on two-rooted 
planar hierarchical lattices (HL) preserves the thermal eigenvalue. This leads to 
a relation between the correlation length critical exponents v of a HL and its 
corresponding dual lattice. Using hyperscaling, we show that their specific heat 
critical exponents e coincide. For a smaller class of HL--namely  of diamond 
and tress types--we prove that another transformation also preserves v and cr 
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Phase transitions of the q-state Potts model on hierarchical lattices (HL) 
have been largely studied with real-space renormalization group methods 
because exact calculations can be performed on such latticesJ 1-5) More 
r e c e n t l y  H u  (6) and da Silva and Tsallis (7) obtained some intriguing results 
studying critical properties of Ising and Potts ferromagnets on HLs. H u  (6) 

exhibits two different HLs (see below, Figs. la and lc) that present the 
same thermal eigenvalue 2. Da Silva and Tsallis (7) show that generalized 
diamond and tress HLs (see examples in Fig. 1 below) have the same 
correlation length critical exponents v. We will show that these results are 
consequences of two HL  transformations rather than singular cases. The 
first one is the duality, (2) a property of any planar HL. The second is 
related to a smaller class of HLs, namely the generalized diamond and tress 
ones(7'8); it transforms a diamond HL into a stress HL and conversely. 
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In order to show the properties induced by these transformations, we 
will consider a q-state Potts ferromagnet on a HL. The Hamiltonian is 
given by 

9f~ = - q J  ~ 6 ~i~j , O'i:0, 1,..., q -  1 (1) 
(,J) 

where the sum is over nearest neighbor sites and 6 is the Kronecker delta. 
The a variables are on the sites of the HL and the coupling constants are 
associated with the bonds. We will use a very convenient variable, the 
thermal transmissivity 

t = [ 1 - exp( - qJ/kB T]/[  1 + (q - 1 ) exp( - qJ/kB T)] 

associated with each bond of the HL. (9) Its dual variable z is defined by the 
relation (9) 

1 - t  
z - (2) 

l + ( q - 1 ) t  

The recursive relation of a two-rooted graph corresponding to the HL 
basic cell with length b and aggregation number A (3) is given by t ' - -G( t ) ,  
where G(t) is a ratio of two polynomials of t. (1~ The thermal eigenvalue 
of this HL is given by 

2 - 8-~-t ,* (3) 

where t* satisfies t * =  G(t*). 
Considering that, for HLs whose basic cells are two-rooted planar 

graphs, the function G associated with a HL is related to the function 
associated with the dual HL by the equation (1~ 

1 - 8 ( ~ )  
G(t) = 1 + ( q -  1) G(v) (4) 

we are able to prove the following property. 

P r o p e r t y  1. The Potts thermal eigenvalues of a two-rooted planar 
HL and of its dual lattice coincide. 

The proof is straightforward. We must take the derivative of Eq. (4) 
with respect to t, then use the chain rule on the right-hand side [having in 
mind that z is related to t by Eq. (2)] and evaluate the derivatives at the 
fixed point t*. Considering that z * =  z(t*) and ~ (~* )=  z*, we verify that 

c~ G -1 
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This leads to the equality between the thermal eigenvalues of the HLs 
associated with G and G (dual) 

2=~ (5) 

where 2 is given by Eq. (3) and ~ = (~C/&)I~.. 

C o r o l l a r y  1. With b the basic cell minimum length of a HL and 
the corresponding length of its dual lattice, Eq. (5) can be written as 

b ~/~ = b~/~ (6) 

where v and ~ are the correlation length critical exponents of a HL and its 
dual lattice, respectively. The definition of intrinsic dimension, (3) namely 
D=-log A/logb, and the fact that duality transformation preserves the 
aggregation number A enable us to rewrite Eq. (6) as 

Dv =/39 (7) 

Corol lary  2. 
2 - ~ ,  we have 

Using the hyperscaling relation for a HL, (4) Dr= 

~=~ (8) 

thus showing that the specific heat critical exponents of a HL and of its 
dual lattice are the same. We remark that the relations between critical 
exponents given by Eqs. (7) and (8) are valid for all planar HL. Further- 
more, if b = b, then also v = ~. 

The second property is related to a smaller class of planar HL. This 
class is partitioned into two subclasses, namely the diamondlike and 
tresslike HLs. The basic cell of a diamong HL is made up of N branches in 
parallel, each one with b bonds in series, and the tress basic cell is made up 
of b clusters in series, each one with N bonds in parallel. For  example, the 
basic cells of Figs. la and lc generate diamond HLs with b = 2, N =  3 and 
b = 3, N =  2, respectively, and those of Figs. lb and ld generate tress HLs 
with b = 3, N = 2 and b = 2, N = 3 respectively. The expression for GD (Gv) 
of the diamond (tress) HL for any b and N is given by 

1 -  {(1 - ? ) / r l  + ( q -  1)73} N 
GD(t ,b ,N)=l+(q_l){( l_tb) /[ l+(q_l) tb]}N (9) 

Gw(t,b,U)=[1 l _ { ( l _ t ) / [ l + ( q _ l ) t ] } u  ]b 
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Fig. 1. 
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(a, c) Diamond and (b, d) tress HL basic cells connected by the transformations 7', 
TDx, and TrD: ((3) roots, ( 0 )  internal sites. 

It is easy to verify by Eqs. (9) and (10) that there is a relation between G~) 
and G~ given by 

GT(co, b, N ) =  [GD(t, b, N)] b (11) 

where co = t b. Thus, the diamond and tress HL can be connected by two 
transformations, the diamond-tress (TDT), given by 

TI)T: Gl)(t, b, N) --+ [GD(t, b, N)] b = GT(t b, b, N) (12) 

and its inverse (tress~liamond TTD) 

TTD : GT(t, b, N) ~ [GT(t, b, N)] lib = GD(t I/b, b, N) (13) 

where the equalities in (12) and (13) follow from Eq. (11). Clearly, TDT and 
TTD are related to the diamond-tress transformations proposed by Ottavi 
and Albinet. (8) 

P r o p e r t y  2. A diamondlike and a tresslike HL with the same b and 
N share the same Potts correlation length critical exponent v. 

This proof is straightforward. We take the derivative of Eq. (11) with 
respect to t and evaluate this derivative at the critical point t*. Having in 
mind that co*= co(t*)= t *b, this leads to 2T = 2D. Since b is the same for 
diamond and tress HLs connected by TDT, this implies that vv = YD. 
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Corollary. Since the diamond and tress HLs connected by TDT ( o r  

TTD) have the same b, this implies that their intrinsic dimensionalities are 
the same. By using hyperscaling, it follows that their specific heat critical 
exponents are the same, aT = ~D- 

It is worthwhile to note that if b ~ N (D va 2), then the tress HL is not 
the dual of a diamond HL. Also, if b = N (D = 2), then the TD~r transfor- 
mation turns out to be the duality transformation. 

For diamond and tress HLs the conjugation of the transformations 
defined by Eqs. (4) and (11), namely T and TDT, connects four HLs, as 
illustrated in Fig. 1. 

In conclusion, the HLs connected by T share the same c~ and their 
correlation length critical exponents are related by Dv=/3~; the HLs 
connected by ToT have both c~ and v equal. 
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